Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Status report of JAEA-AMS-TONO; Research and technical development in the last four years

Kokubu, Yoko; Fujita, Natsuko; Watanabe, Takahiro; Matsubara, Akihiro; Ishizaka, Chika; Miyake, Masayasu*; Nishio, Tomohiro*; Kato, Motohisa*; Ogawa, Yumi*; Ishii, Masahiro*; et al.

Nuclear Instruments and Methods in Physics Research B, 539, p.68 - 72, 2023/06

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has an accelerator mass spectrometer (JAEA-AMS-TONO-5MV). The spectrometer enabled us to use a multi-nuclide AMS of carbon-14 ($$^{14}$$C), beryllium-10, aluminium-26 and iodine-129, and we have recently been proceeding test measurement of chlorine-36. In response to an increase of samples, we installed a state-of-the-art multi-nuclide AMS with a 300 kV Tandetron accelerator in 2020. Recently, we are driving the development of techniques of isobar separation in AMS and of sample preparation. Ion channeling is applied to remove isobaric interference and we are building a prototype AMS based on this technique for downsizing of AMS. The small sample graphitization for $$^{14}$$C has been attempted using an automated graphitization equipment equipped with an elemental analyzer.

Journal Articles

$$^{10}$$Be analysis of the rock samples from the northeastern shore of Lake Pumoyum Co in south Tibetan Plateau

Nara, Fumiko*; Watanabe, Takahiro; Kokubu, Yoko; Zhu, L.*

Nuclear Instruments and Methods in Physics Research B, 539, p.28 - 32, 2023/06

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

Lake Pumoyum Co is located on the south Tibetan Plateau. The lake terraces are developed on the eastern lake shore, and it supposed that the large lake level changes would have happened in Pumoyum Co. The in-situ terrestrial cosmogenic adionuclides can be used to estimate the earth surface processes, such as the erosion rate and exposure age dating of rocks. Here we report the results of $$^{10}$$Be values of the rock samples from the lake terraces around Pumoyum Co. The concentrations of $$^{10}$$Be were measured by the JAEA-AMS-TONO-5MV in the Tono Geoscience Center, Japan Atomic Energy Agency. The $$^{10}$$Be concentrations ranged from 3.78 to 10.8$$times$$10$$^{6}$$ (atoms/g), but the $$^{10}$$Be values showed the decreasing trend following to the distance from the lake shore. This result indicates that $$^{10}$$Be values of the rocks at the shore of Pumoyum Co could be influenced from the erosion rate or tectonic process rather than the exposure date resulting from the lake level changes.

Journal Articles

The New 300 kV multi-element AMS system at the TONO Geoscience Center, Japan Atomic Energy Agency

Fujita, Natsuko; Miyake, Masayasu*; Matsubara, Akihiro; Kokubu, Yoko; Klein, M.*; Scognamiglio, G.*; Mous, D. J. W.*; Columna, E. L.*; Shimada, Akiomi; Ishimaru, Tsuneari

Nuclear Instruments and Methods in Physics Research B, 533, p.91 - 95, 2022/12

 Times Cited Count:1 Percentile:33.4(Instruments & Instrumentation)

In the Tono Geoscience Center, Japan Atomic Energy Agency, investigation of deep underground environments for R&D program related to the geological disposal of High-Level Radioactive Waste has been performed by using various dating systems including an AMS system. In response to the increasing demand for our AMS measurements especially from a newly established R&D program supporting development of technology for geological disposal of HLW, a state-of-the-art multi-nuclide AMS system was installed. This system is equipped with a 300 kV AMS. The system has capability to measure four nuclides: carbon-14, beryllium-10, aluminium-26 and iodine-129. The system structure and features, as well as the results of performance test will be presented.

Journal Articles

Project for development of a downsized AMS system based on the surface stripper technique

Fujita, Natsuko; Matsubara, Akihiro; Kimura, Kenji; Jinno, Satoshi; Kokubu, Yoko

Nuclear Instruments and Methods in Physics Research B, 532, p.13 - 18, 2022/12

 Times Cited Count:1 Percentile:33.4(Instruments & Instrumentation)

Over the last decade, significant technological advances were made to downsize the AMS systems. Japan Atomic Energy Agency has started a project for developing a prototype downsized AMS system (with the footprint of the system is 1.9 m $$times$$ 1.9 m) based on the surface stripper technique. Although the system configuration using an ion source, magnets, and detectors is similar to that in conventional systems, there is no tandem accelerator as well as a gas stripper. The ion acceleration is provided in the ion source (maximum ion energy 40 keV). For proof-of-principle experiments, we have planned two steps: (1) Observation of the specular reflection and the dissociation by using a compact electrostatic analyzer located just behind the stripper, and (2) Demonstration of $$^{14}$$C measurement, along with the experimental confirmation of the isobar suppression capability of the surface stripper.

Journal Articles

A Safer preprocessing system for analyzing dissolved organic radiocarbon in seawater

Otosaka, Shigeyoshi*; Jeon, H.*; Hou, Y.*; Watanabe, Takahiro; Aze, Takahiro*; Miyairi, Yosuke*; Yokoyama, Yusuke*; Ogawa, Hiroshi*

Nuclear Instruments and Methods in Physics Research B, 527, p.1 - 6, 2022/09

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

The measurement the radiocarbon of dissolved organic matter (DO$$^{14}$$C) in seawater can provide information about a timescale of the dynamics of dissolved organic matter as well as about its sources in the ocean. Due to the low DOC concentration in seawater, in spite of the development of accelerator mass spectrometry, a relatively large volume of seawater ($$sim$$1 L) is required for that analysis. In addition, complicated processing such as UV irradiation that emits high heat is required. In this study, we have developed a safer and easier method to analyze DO$$^{14}$$C in seawater than the conventional method. A particularly significant change was the adoption of a low-pressure mercury lamp in the decomposition system, which enabled direct decomposition of organic matter at lower temperatures. We also propose a method to quantitatively evaluate the accuracy of this system by analyzing simulated seawater consists of a soluble reference material of organic matter and sodium chloride. This method is expected to be applied not only to carbon isotope ratio analysis but also to analysis of trace elements and isotopes of various dissolved organic substances.

5 (Records 1-5 displayed on this page)
  • 1